Принцип работы сопла. Критический расход. Режим дозвуковых скоростей

Для большего увеличения скорости истечения выше критической применяют комбинированное сопло Лаваля, названное по имени шведского инженера, впервые его предложившего. Схема сопла представлена на рис.3.4. Его суживающаяся часть работает как дозвуковое сопло, а расширяющаяся - как сверхзвуковое. В наименьшем сечении скорость равна местной скорости звука. При правильном выборе выходного сечения давление газа в нем равно

Рис.3.4. Комбинированное сопло Лаваля

давлению окружающей среды. Такой режим называется расчетным. Максимальный расход через сопло Лаваля остается таким же, как и в суживающемся сопле, увеличивается только скорость газа. Скорость в горловине сопла определяется по уже известному уравнению для критической скорости

Скорость в выходном сечении сопла вычисляется из приведенного ранее выражения при полном расширении газа до давления окружающей среды p 2 .

Если полагать, что расширение газа в сопле является адиабатным, то параметры (температура, давление, скорость, плотность) в любом промежуточном сечении можно определить используя известные зависимости для адиабатного процесса.

Постепенное расширение газа в раструбе сопла Лаваля происходит лишь при условии, что угол его раскрытия a не превышает 12-14 0 для конического сопла. При больших значениях угла a струи отрываются от стенок сопла и в нем образуются вихри как и при отсутствии раструба. При соотношении давлений b > b кр в наименьшем сечении сопла скорость газа будет меньше скорости звука и расширяющаяся часть будет работать как диффузор.

Сопла Лаваля широко используются для достижения сверхзвуковых скоростей движения газа или пара в турбинах, реактивных и ракетных двигателях, аэродинамических трубах. Следует подчеркнуть, что сопло Лаваля будет выполнять роль диффузора в том случае, когда скорость перед ним больше скорости звука («обратное» сопло Лаваля). Такие сопла применяются значительно реже, чем традиционные.

Сверхзвуковая скорость W>W зв. может быть получена в сопле, состоящем из суживающейся и расширяющейся части. Такое сопло называется соплом Лаваля по имени его создателя (рис.1).

Рисунок 1

Сужающаяся часть служит для ускорения дозвукового потока газа.

В соответствии с уравнением Гюгонио, в сужающейся части газ может разогнаться до критической скорости в самом узком сечении, в критическом. В расширяющейся части должно происходить дальнейшее ускорение газа до сверхзвуковых скоростей. Течение газа в сужающейся части подчиняется тем же законам, что и в простом сопле.

Режим работы сопла Лаваля

При Р 1 =Р а (атмосферном давлении) движения газа нет. С увеличением Р 1 перед соплом скорости вдоль всего сопла дозвуковые, т. е. скорость в расширяющейся части падает, а давление растет.

Дальнейшее повышение давления перед соплом приводит к тому, что за горловиной скорость газа становится выше скорости звука и давление его падает.

При достаточно высоком значении Р 1 давления хватает ровно настолько, чтобы к выходу из сопла давление плавно выровнялось с атмосферным. Вместе с непрерывным падением давления непрерывно растет скорость. Режим при котором в свехзвуковом сопле происходит непрерывное уменьшение давления от Р 1 до Р а называется расчетным. Для конкретного сопла существует единственное значение , при котором оно работает в расчетном режиме и Р 2 =Р а.

Режимы, при которых относительное давление слишком велико, чтобы обеспечить сверхзвуковую скорость именно на срезе сопла называют нерасчетными, а сопла, работающие в этих режимах – перерасширенными.

Обычно сужающуюся и расширяющуюся части сопла Лаваля выполняют коническими. Сопряжение конусов закругляют так, чтобы проходное сечение было равно критическому. Центральный угол сужения не имеет существенного значения и обычно равен 60–90 0 . Угол раскрытия расширяющейся части предусматривают 8–12 0 .

Сопла Лаваля рассчитывают таким образом, чтобы скорость в самом узком сечении его была критической, а в расширяющейся части превосходила звуковую, постепенно возрастая по мере приближения к выходному отверстию сопла. Если скорость в критическом сечении сопла f кр. будет меньше критической, то в расширяющейся части будет уменьшаться, а не увеличиваться, т. е. будет изменяться также, как и в обычном сопле.

В сопле Лаваля выравнивание (уменьшение) давления в критическом сечении до Р а происходит не за соплом, а в расширяющейся части сопла, и сопровождается увеличением скорости истечения. Соответственно возрастает кинетическая энергия струи, которая используется для совершенствования полезной работы. В этом преимущество сопла Лаваля перед обычным соплом.

Сопло Лаваля

Сопло́ Лава́ля - техническое приспособление, разгоняющее проходящий по нему газовый поток до сверхзвуковых скоростей. Широко используется на некоторых типах паровых турбин и является важной частью современных ракетных двигателей и сверхзвуковых реактивных авиационных двигателей .

Сопло представляет собой канал, суженный в середине. В простейшем случае такое сопло может состоять из пары усечённых конусов, сопряжённых узкими концами. Эффективные сопла современных ракетных двигателей профилируются на основании газодинамических расчётов.

Сопло было предложено в 1890 г. шведским изобретателем Густафом де Лавалем для паровых турбин .

Приоритет Годдарда на применение сопла Лаваля для ракет подтверждается рисунком в описании изобретения в патенте США U.S. Patent 1 102 653 от 7 июля 1914 г., на двухступенчатую твердотопливную ракету, заявленном в октябре 1913 г.

В России в ракетном двигателе сопло Лаваля впервые было использовано генералом М. М. Поморцевым в 1915 г.. В ноябре 1915 года в Аэродинамический институт обратился генерал М. М. Поморцев с проектом боевой пневматической ракеты. Ракета Поморцева приводилась в движение сжатым воздухом, что существенно ограничивало ее дальность, но зато делало ее бесшумной. Ракета предназначалась для стрельбы из окопов по вражеским позициям. Боеголовка оснащалась тротилом. В ракете Поморцева было применено два интересных конструктивных решения: в двигателе имелось сопло Лаваля , а с корпусом был связан кольцевой стабилизатор.

Принцип действия

Феномен ускорения газа до сверхзвуковых скоростей в сопле Лаваля был обнаружен в конце XIX в. экспериментальным путём. Позже это явление нашло теоретическое объяснение в рамках газовой динамики .

При следующем анализе течения газа в сопле Лаваля принимаются следующие допущения:

Отношение локальной скорости к локальной скорости звука обозначается числом Маха , которое также понимается местным, то есть зависимым от координаты :

(1) (4)

Скорость газа на выходе из сопла, м/с,

- Абсолютная температура газа на входе,

- Универсальная газовая постоянная Дж/(киломоль·К),

- молярная масса газа, кг/киломоль,

Показатель адиабаты ,

- Удельная теплоёмкость при постоянном давлении, Дж/(киломоль·К),

Удельная теплоёмкость при постоянном объеме, Дж/(киломоль·К),

Абсолютное давление газа на выходе из сопла, Па

Абсолютное давление газа на входе в сопло, Па

Функционирование в среде

При работе сопла Лаваля в непустой среде (чаще всего речь идет об атмосфере) сверхзвуковое течение может возникнуть только при достаточно большом избыточном давлении газа на входе в сопло по сравнению с давлением окружающей среды.

При возникновении сверхзвукового течения давление газа на выходном срезе сопла может оказаться даже меньше давления окружающей среды (вследствие перерасширения газа при движении по соплу). Такой поток может оставаться стабильным, поскольку давление окружающей среды (пока оно ненамного превышает давление газа на срезе сопла) не может распространяться против сверхзвукового потока.

Зависимость характеристик двигателя от давления газа на срезе сопла носит более сложный характер: как следует из уравнения (4), растёт с убыванием , а добавка - убывает, и при становится отрицательной.

При фиксированном расходе газа и давлении на входе в сопло величина зависит только от площади среза сопла, которую обычно характеризуют относительной величиной - степенью расширения сопла - отношением площади конечного среза к площади критического сечения. Чем больше степень расширения сопла, тем меньше давление , и тем больше скорость истечения газа .

Рассматривая соотношение давления на срезе сопла и давления окружающей среды, выделяют следующие случаи.

Однако, при значительном превышении давления окружающей среды над давлением в газовом потоке, в нём возникает обратная ударная волна , которая распространяется против потока со сверхзвуковой скоростью, тем большей, чем больше перепад давления на её фронте, что приводит к срыву сверхзвукового течения газа в сопле (полному или частичному). Это явление может стать причиной автоколебательного процесса, когда сверхзвуковое движение газа в сопле периодически возникает и срывается с частотой от нескольких герц до десятков герц. Для сопел ракетных двигателей, в которых происходят процессы большой мощности, эти автоколебания являются разрушительными, не говоря о том, что эффективность двигателя в таком режиме резко падает. Это накладывает ограничение на степень расширения сопла, работающего в атмосфере.

Регулирование степени расширения сопла с насадком.
1 - собственно сопло Лаваля;
2 - сопловой насадок;
А - положение насадка при работе в нижних, наиболее плотных, слоях атмосферы;
В - положение насадка на большой высоте.

При подстановке в формулу (4) получается теоретический предел скорости истечения в пустоте, определяемый внутренней энергией газа: К этому пределу асимптотически стремится скорость истечения при неограниченном увеличении степени расширения сопла, при этом увеличивается длина, диаметр выходного сечения, и, следовательно, вес сопла. Конструктор сопла, работающего в пустоте, должен принять решение: при какой степени расширения дальнейшее увеличение размера и веса сопла не стоит того увеличения скорости истечения, которое может быть достигнуто в результате. Такое решение принимается на основании всестороннего рассмотрения функционирования всего аппарата в целом.

Вышесказанное объясняет то обстоятельство, что ракетные двигатели, работающие в плотных слоях атмосферы, как правило, имеют степень расширения меньшую, чем двигатели, работающие в пустоте. Например, у двигателя F-1 первой ступени носителя Сатурн-5 степень расширения составляет 16:1, а RL 10B-2 - двигатель, используемый NASA на ускорителях межпланетных зондов, имеет степень расширения равную 250:1.

Стремление добиться эффективной работы двигателя как на Земле, так и на высоте заставляет конструкторов искать технические решения, позволяющие достигнуть эту цель. Одним из таких решений явился подвижный сопловой насадок - «продолжение» сопла, которое пристыковывается к нему по достижении ракетой разреженных слоёв атмосферы, увеличивая, таким образом, степень расширения сопла. Схема действия насадка изображена на рисунке справа. Эта схема была практически реализована, в частности, в конструкции двигателя НК-33-1 .

Проблема оптимизации степени расширения сопла очень актуальна и при разработке авиационных реактивных двигателей, поскольку самолёт предназначен для полётов в широком диапазоне высот, а от удельного импульса его двигателей в сильной мере зависит экономичность и, следовательно, дальность полёта. В современных турбореактивных двигателях применяются регулируемые сопла Лаваля. Такие сопла состоят из продольных пластин, имеющих возможность перемещения друг относительно друга, со специальным механизмом с гидравлическим или пневматическим приводом, позволяющим в полёте изменять площадь выходного и/или критического сечений, и, таким образом, добиваться оптимальной степени расширения сопла при полёте на любой высоте. Регулирование площади проходных сечений выполняется, как правило, автоматически специальной системой управления. Этот же механизм позволяет по команде пилота изменять в некоторых пределах и направление реактивной струи, а следовательно, направление вектора тяги , что существенно повышает маневренность самолёта.

Рассмотрим вопрос: можно ли каким-либо образом повлиять на изменение скорости с 2 и давления р 2 в выходном сечении сопла в области b.

Для этого сначала прологарифмируем, а затем продифференцируем уравнение массового расхода: ; тогда получим или

(6)

Из 1-го закона термодинамики в тепловой и механических формах для изоэнтропного течения в неподвижном канале получаем (пренебрегая изменением потенциальной энергии положения: gdH=0 )

В тепловой форме - => (7)

В механической форме - => . (8)

Из (7) и (8) получаем

Или > .

Подставив в (6) получаем уравнение Гюгонио

.

Это уравнение позволяет провести важный качественный анализ движения сжимаемого газа в канале переменного сечения.

1. Рассмотрим дозвуковой поток на входе в канал: М<1 (т.е. с<а) .

Если канал суживающийся (конфузор, т.е. dF<0), то из уравнения Гюгонио следует dc>0 и поток ускоряется. Если канал расширяющийся (диффузор, т.е. dF>0), то из уравнения Гюгонио следует dc<0 и поток тормозится. Т.е. поведение дозвукового потока газа качественно аналогично поведению потока несжимаемой жидкости.

2. Рассмотрим сверхзвуковой поток на входе в канал: М>1 (т.е. с>а). Если канал суживающийся (конфузор, т.е. dF<0), то из уравнения Гюгонио следует dc<0 и поток тормозится. Если канал расширяющийся (диффузор, т.е. dF>0), то из уравнения Гюгонио следует dc>0 и поток ускоряется. Т.е. сверхзвуковой поток в конфузоре тормозится, а в диффузоре - ускоряется.

3. М=1 (с=а=а кр, т.е. поток газа в местном сечении канала достигает критической скорости). Тогда из уравнения Гюгонио должно быть dF=0, это значит, что при изоэнтропном течении газа критическая скорость достигается в самом узком сечении канала - это сечение называется критическим .

При наличии в канале такого узкого сечения становится возможным непрерывный перевод потока из дозвукового в сверхзвуковой и наоборот:

- для перевода дозвукового потока в сверхзвуковой канал должен состоять из конфузора, в котором с<а и диффузора, в котором с>а ; такой комбинированный канал впервые был применен шведским инженером Лавалем в 80-х годах CIC века и получил название «сопло Лаваля »;

Для перевода сверхзвукового потока в дозвуковой, аналогичные по конструкции комбинированные каналы называются сверхзвуковыми диффузорами .

Чтобы получить в выходном сечении сопла Лаваля определенную сверхзвуковую скорость необходимо выполнить следующие условия:

1) иметь достаточное отношения давлений на этом канале;

2) соответствующим образом спроектировать канал.


FlowVision обладает обширными возможностями визуализации результатов расчёта. Ниже приведены графики и заливки.

Графики изменения скорости (черным), давления (желтым) и температуры (красным) вдоль сопла Лаваля

Заливка скорости вдоль сопла Лаваля (max знач. 599 м/с, min знач. 44 м/с)

Заливка из избыточного давления вдоль сопла Лаваля

Скорость потока вдоль сопла увеличивается, а скорость звука, температура, давление и плотность уменьшаются.

Сопло́ Лава́ля - газовый канал особого профиля, разгоняющий проходящий по нему газовый поток до сверхзвуковых скоростей. Широко используется на некоторых типах паровых турбин и является важной частью современных ракетных двигателей и сверхзвуковых реактивных авиационных двигателей .

Сопло представляет собой канал, суженный в середине. В простейшем случае такое сопло может состоять из пары усечённых конусов, сопряжённых узкими концами. Эффективные сопла современных ракетных двигателей профилируются на основании газодинамических расчётов.

Сопло было предложено в 1890 г. шведским изобретателем Густафом де Лавалем для паровых турбин .

При анализе течения газа в сопле Лаваля принимаются следующие допущения:

  • Газ считается идеальным .
  • Газовый поток является изоэнтропным (то есть имеет постоянную энтропию, силы трения и диссипативные потери не учитываются) и адиабатическим (то есть теплота не подводится и не отводится).
  • Газовое течение является стационарным и одномерным, то есть в любой фиксированной точке сопла все параметры потока постоянны во времени и меняются только вдоль оси сопла, причём во всех точках выбранного поперечного сечения параметры потока одинаковы, а вектор скорости газа всюду параллелен оси симметрии сопла.
  • Массовый расход газа одинаков во всех поперечных сечениях потока.
  • Влияние всех внешних сил и полей (в том числе гравитационного) пренебрежимо мало.
  • Ось симметрии сопла является пространственной координатой texvc .

Отношение локальной скорости Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): v к локальной скорости звука Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): C обозначается числом Маха , которое также понимается местным, то есть зависимым от координаты Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): x :

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M = \frac{v}{C} (1) Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): v_e = \sqrt{\;\frac{T\;R}{M}\cdot\frac{2\;k}{k-1}\cdot\bigg[ 1-\bigg(\frac {p_e} {p}\bigg)^{(k-1)/k}\bigg]} (4)

Невозможно разобрать выражение (Выполняемый файл texvc - Скорость газа на выходе из сопла, м/с,

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): T - Абсолютная температура газа на входе,

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): R - Универсальная газовая постоянная Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): R=8,31 Дж/(моль·К),

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M - молярная масса газа, кг/моль,

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k - Показатель адиабаты Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k=c_p/c_v ,

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): c_p - Удельная теплоёмкость при постоянном давлении, Дж/(моль·К),

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): c_v - Удельная теплоёмкость при постоянном объеме, Дж/(моль·К),

Невозможно разобрать выражение (Выполняемый файл texvc - Абсолютное давление газа на выходе из сопла, Па

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): p - Абсолютное давление газа на входе в сопло, Па

Функционирование в среде

При работе сопла Лаваля в непустой среде (чаще всего речь идет об атмосфере) сверхзвуковое течение может возникнуть только при достаточно большом избыточном давлении газа на входе в сопло по сравнению с давлением окружающей среды.

При возникновении сверхзвукового течения давление газа на выходном срезе сопла может оказаться даже меньше давления окружающей среды (вследствие перерасширения газа при движении по соплу). Такой поток может оставаться стабильным, поскольку давление окружающей среды (пока оно ненамного превышает давление газа на срезе сопла) не может распространяться против сверхзвукового потока.[[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]]

Зависимость характеристик двигателя от давления газа на срезе сопла Невозможно разобрать выражение (Выполняемый файл texvc носит более сложный характер: как следует из уравнения (4), Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): v_e растёт с убыванием Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): p_e , а добавка Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \frac {A_e} {m{"}}\cdot(p_e-p_o) - убывает, и при Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): p_eСтановится отрицательной.

При фиксированном расходе газа и давлении на входе в сопло величина Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): p_e зависит только от площади среза сопла, которую обычно характеризуют относительной величиной - степенью расширения сопла - отношением площади конечного среза к площади критического сечения. Чем больше степень расширения сопла, тем меньше давление Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): p_e , и тем больше скорость истечения газа Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): v_e .

Рассматривая соотношение давления на срезе сопла и давления окружающей среды, выделяют следующие случаи.

  • Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): p_e=p_o - оптимальный режим расширения сопла, при котором удельный импульс достигает максимального значения (при прочих равных условиях). При этом, как следует из уравнения (5), удельный импульс становится численно равным скорости истечения газа Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): v_e .
  • Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): p_e - режим перерасширения . Уменьшение степени расширения сопла (несмотря на уменьшение скорости истечения газа) приведёт к увеличению удельного импульса. При проектировании ракетных двигателей первых ступеней ракет конструкторы часто сознательно идут на перерасширение, поскольку с набором ракетой высоты атмосферное давление падает, уравнивается с давлением на срезе сопла, и удельный импульс двигателя возрастает. Таким образом, жертвуя тягой в начале полёта, получают преимущество на последующих его стадиях, что, как показывают расчёты и практика, в сумме даёт выигрыш в конечной скорости ракеты.
Однако, при значительном превышении давления окружающей среды над давлением в газовом потоке, в нём возникает обратная ударная волна , которая распространяется против потока со сверхзвуковой скоростью, тем большей, чем больше перепад давления на её фронте, что приводит к срыву сверхзвукового течения газа в сопле (полному или частичному). Это явление может стать причиной автоколебательного процесса, когда сверхзвуковое движение газа в сопле периодически возникает и срывается с частотой от нескольких герц до десятков герц. Для сопел ракетных двигателей, в которых происходят процессы большой мощности, эти автоколебания являются разрушительными, не говоря о том, что эффективность двигателя в таком режиме резко падает. Это накладывает ограничение на степень расширения сопла, работающего в атмосфере.

Проблема оптимизации степени расширения сопла очень актуальна и при разработке авиационных реактивных двигателей, поскольку самолёт предназначен для полётов в широком диапазоне высот, а от удельного импульса его двигателей в сильной мере зависит экономичность и, следовательно, дальность полёта. В современных турбореактивных двигателях применяются регулируемые сопла Лаваля. Такие сопла состоят из продольных пластин, имеющих возможность перемещения друг относительно друга, со специальным механизмом с гидравлическим или пневматическим приводом, позволяющим в полёте изменять площадь выходного и/или критического сечений, и, таким образом, добиваться оптимальной степени расширения сопла при полёте на любой высоте. Регулирование площади проходных сечений выполняется, как правило, автоматически специальной системой управления. Этот же механизм позволяет по команде пилота изменять в некоторых пределах и направление реактивной струи, а следовательно, направление вектора тяги , что существенно повышает маневренность самолёта.

См. также

Напишите отзыв о статье "Сопло Лаваля"

Примечания

Литература

  • Ландау Л. Д. , Лифшиц Е. М. Глава X. Одномерное движение сжимаемого газа. § 97. Истечение газа через сопло // Теоретическая физика . - Т. 6. Гидродинамика.
  • Моравский А. В., Файн М. А. Огонь в упряжке, или Как изобретают тепловые двигатели. - М .: Знание, 1990. - 192 с. - (Жизнь замечательных идей). - 50 000 экз. - ISBN 5-07-000069-1.

Отрывок, характеризующий Сопло Лаваля

И только теперь, через много, много лет (уже давно впитав своей «изголодавшейся» душой знания моего удивительного мужа, Николая), просматривая сегодня для этой книги своё забавное прошлое, я с улыбкой вспомнила Атенайс, и, конечно же, поняла, что то, что она называла «отпечатком», было просто энергетическим всплеском, который происходит с каждым из нас в момент нашей смерти, и достигает именно того уровня, на который своим развитием сумел попасть умерший человек. А то, что Атенайс называла тогда «прощание» с тем, «кем она была», было ни что иное, как окончательное отделение всех имеющихся «тел» сущности от её мёртвого физического тела, чтобы она имела возможность теперь уже окончательно уйти, и там, на своём «этаже», слиться со своей недостающей частичкой, уровня развития которой она, по той или иной причине, не успела «достичь» живя на земле. И этот уход происходил именно через год.
Но всё это я понимаю сейчас, а тогда до этого было ещё очень далеко, и мне приходилось довольствоваться своим, совсем ещё детским, пониманием всего со мной происходящего, и своими, иногда ошибочными, а иногда и правильными, догадками...
– А на других «этажах» сущности тоже имеют такие же «отпечатки»? – заинтересованно спросила любознательная Стелла.
– Да, конечно имеют, только уже иные, – спокойно ответила Атенайс. – И не на всех «этажах» они так же приятны, как здесь... Особенно на одном...
– О, я знаю! Это, наверное «нижний»! Ой, надо обязательно туда пойти посмотреть! Это же так интересно! – уже опять довольно щебетала Стелла.
Было просто удивительно, с какой быстротой и лёгкостью она забывала всё, что ещё минуту назад её пугало или удивляло, и уже опять весело стремилась познать что-то для неё новое и неведомое.
– Прощайте, юные девы... Мне пора уходить. Да будет ваше счастье вечным... – торжественным голосом произнесла Атенайс.
И снова плавно взмахнула «крылатой» рукой, как бы указывая нам дорогу, и перед нами тут же побежала, уже знакомая, сияющая золотом дорожка...
А дивная женщина-птица снова тихо поплыла в своей воздушной сказочной ладье, опять готовая встречать и направлять новых, «ищущих себя» путешественников, терпеливо отбывая какой-то свой особый, нам непонятный, обет...
– Ну что? Куда пойдём, «юная дева»?.. – улыбнувшись спросила я свою маленькую подружку.
– А почему она нас так называла? – задумчиво спросила Стелла. – Ты думаешь, так говорили там, где она когда-то жила?
– Не знаю... Это было, наверное, очень давно, но она почему-то это помнит.
– Всё! Пошли дальше!.. – вдруг, будто очнувшись, воскликнула малышка.
На этот раз мы не пошли по так услужливо предлагаемой нам дорожке, а решили двигаться «своим путём», исследуя мир своими же силами, которых, как оказалось, у нас было не так уж и мало.
Мы двинулись к прозрачному, светящемуся золотом, горизонтальному «тоннелю», которых здесь было великое множество, и по которым постоянно, туда-сюда плавно двигались сущности.
– Это что, вроде земного поезда? – засмеявшись забавному сравнению, спросила я.
– Нет, не так это просто... – ответила Стелла. – Я в нём была, это как бы «поезд времени», если хочешь так его называть...
– Но ведь времени здесь нет? – удивилась я.
– Так-то оно так, но это разные места обитания сущностей... Тех, которые умерли тысячи лет назад, и тех, которые пришли только сейчас. Мне это бабушка показала. Это там я нашла Гарольда... Хочешь посмотреть?
Ну, конечно же, я хотела! И, казалось, ничто на свете не могло бы меня остановить! Эти потрясающие «шаги в неизвестное» будоражили моё и так уже слишком живое воображение и не давали спокойно жить, пока я, уже почти падая от усталости, но дико довольная увиденным, не возвращалась в своё «забытое» физическое тело, и не валилась спать, стараясь отдохнуть хотя бы час, чтобы зарядить свои окончательно «севшие» жизненные «батареи»...
Так, не останавливаясь, мы снова преспокойно продолжали своё маленькое путешествие, теперь уже покойно «плывя», повиснув в мягком, проникающем в каждую клеточку, убаюкивающем душу «тоннеле», с наслаждением наблюдая дивное перетекание друг через друга кем-то создаваемых, ослепительно красочных (наподобие Стеллиного) и очень разных «миров», которые то уплотнялись, то исчезали, оставляя за собой развевающиеся хвосты сверкающих дивными цветами радуг...
Неожиданно вся эта нежнейшая красота рассыпалась на сверкающие кусочки, и нам во всем своём великолепии открылся блистающий, умытый звёздной росой, грандиозный по своей красоте, мир...
У нас от неожиданности захватило дух...
– Ой, красоти-и-ще како-о-е!.. Ма-а-амочка моя!.. – выдохнула малышка.
У меня тоже от щемящего восторга перехватило дыхание и, вместо слов, вдруг захотелось плакать...
– А кто же здесь живёт?.. – Стелла дёрнула меня за руку. – Ну, как ты думаешь, кто здесь живёт?..
Я понятия не имела, кем могут быть счастливые обитатели подобного мира, но мне вдруг очень захотелось это узнать.
– Пошли! – решительно сказала я и потянула Стеллу за собой.
Нам открылся дивный пейзаж... Он был очень похож на земной и, в то же время, резко отличался. Вроде бы перед нами было настоящее изумрудно зелёное «земное» поле, поросшее сочной, очень высокой шелковистой травой, но в то же время я понимала, что это не земля, а что-то очень на неё похожее, но чересчур уж идеальное... ненастоящее. И на этом, слишком красивом, человеческими ступнями не тронутом, поле, будто красные капли крови, рассыпавшись по всей долине, насколько охватывал глаз, алели невиданные маки... Их огромные яркие чашечки тяжело колыхались, не выдерживая веса игриво садившихся на цветы, большущих, переливающихся хаосом сумасшедших красок, бриллиантовых бабочек... Странное фиолетовое небо полыхало дымкой золотистых облаков, время от времени освещаясь яркими лучами голубого солнца... Это был удивительно красивый, созданный чьей-то буйной фантазией и слепящий миллионами незнакомых оттенков, фантастический мир... А по этому миру шёл человек... Это была малюсенькая, хрупкая девочка, издали чем-то очень похожая на Стеллу. Мы буквально застыли, боясь нечаянно чем-то её спугнуть, но девочка, не обращая на нас никакого внимания, спокойно шла по зелёному полю, почти полностью скрывшись в сочной траве... а над её пушистой головкой клубился прозрачный, мерцающий звёздами, фиолетовый туман, создавая над ней дивный движущийся ореол. Её длинные, блестящие, фиолетовые волосы «вспыхивали» золотом, ласково перебираемые лёгким ветерком, который, играясь, время от времени шаловливо целовал её нежные, бледные щёчки. Малютка казалась очень необычной, и абсолютно спокойной...
– Заговорим? – тихо спросила Стелла.
В тот момент девочка почти поравнялась с нами и, как будто очнувшись от каких-то своих далёких грёз, удивлённо подняла на нас свои странные, очень большие и раскосые... фиолетовые глаза. Она была необыкновенно красива какой-то чужой, дикой, неземной красотой и выглядела очень одинокой...
– Здравствуй, девочка! Почему ты такая грустная идёшь? Тебе нужна какая-то помощь? – осторожно спросила Стелла.
Малютка отрицательно мотнула головкой:
– Нет, помощь нужна вам, – и продолжала внимательно рассматривать нас своими странными раскосыми глазами.
– Нам? – удивилась Стелла. – А в чём она нам нужна?..
Девочка раскрыла свои миниатюрные ладошки, а на них... золотистым пламенем сверкали два, изумительно ярких фиолетовых кристалла.
– Вот! – и неожиданно тронув кончиками пальчиков наши лбы, звонко засмеялась – кристаллы исчезли...
Это было очень похоже на то, как когда-то дарили мне «зелёный кристалл» мои «звёздные» чудо-друзья. Но то были они. А это была всего лишь малюсенькая девчушка... да ещё совсем не похожая на нас, на людей...
– Ну вот, теперь хорошо! – довольно сказала она и, больше не обращая на нас внимания, пошла дальше...
Мы ошалело смотрели ей в след и, не в состоянии ничего понять, продолжали стоять «столбом», переваривая случившееся. Стелла, как всегда очухавшись первой, закричала:
– Девочка, постой, что это? Что нам с этим делать?! Ну, подожди же!!!
Но маленький человечек, лишь, не оборачиваясь, помахал нам своей хрупкой ладошкой и преспокойно продолжал свой путь, очень скоро полностью исчезнув в море сочной зелёной, неземной травы... над которой теперь лишь светлым облачком развевался прозрачный фиолетовый туман...
– Ну и что это было? – как бы спрашивая саму себя, произнесла Стелла.
Ничего плохого я пока не чувствовала и, немного успокоившись после неожиданно свалившегося «подарка», сказала.
– Давай не будем пока об этом думать, а позже будет видно...
На этом и порешили.
Радостное зелёное поле куда-то исчезло, сменившись на этот раз совершенно безлюдной, холодно-ледяной пустыней, в которой, на единственном камне, сидел единственный там человек... Он был чем-то явно сильно расстроен, но, в то же время, выглядел очень тёплым и дружелюбным. Длинные седые волосы спадали волнистыми прядями на плечи, обрамляя серебристым ореолом измождённое годами лицо. Казалось, он не видел где был, не чувствовал на чём сидел, и вообще, не обращал никакого внимания на окружающую его реальность...
– Здравствуй, грустный человек! – приблизившись достаточно, чтобы начать разговор, тихо поздоровалась Стелла.
Человек поднял глаза – они оказались голубыми и чистыми, как земное небо.
– Что вам, маленькие? Что вы здесь потеряли?.. – отрешённо спросил «отшельник».
– Почему ты здесь один сидишь, и никого с тобой нет? – участливо спросила Стелла. – И место такое жуткое...
Было видно, что человек совсем не хотел общаться, но тёплый Стеллин голосок не оставлял ему никакого выхода – приходилось отвечать...
– Мне никто не нужен уже много, много лет. В этом нет никакого смысла, – прожурчал его грустный, ласковый голос.
– А что же тогда ты делаешь тут один? – не унималась малышка, и я испугалась, что мы покажемся ему слишком навязчивыми, и он просто попросит нас оставить его в покое.
Но у Стеллы был настоящий талант разговорить любого, даже самого молчаливого человека... Поэтому, забавно наклонив на бок свою милую рыжую головку, и, явно не собираясь сдаваться, она продолжала:
– А почему тебе не нужен никто? Разве такое бывает?
– Ещё как бывает, маленькая... – тяжко вздохнул человек. – Ещё как бывает... Я всю свою жизнь даром прожил – кто же мне теперь нужен?..
Тут я кое-что потихонечку начала понимать... И собравшись, осторожно спросила:
– Вам открылось всё, когда вы пришли сюда, так ведь?
Человек удивлённо вскинулся и, вперив в меня свой, теперь уже насквозь пронизывающий, взгляд, резко спросил:
– Что ты об этом знаешь, маленькая?.. Что ты можешь об этом знать?... – он ещё больше ссутулился, как будто тяжесть, навалившаяся на него, была неподъёмной. – Я всю жизнь бился о непонятное, всю жизнь искал ответ... и не нашёл. А когда пришёл сюда, всё оказалось так просто!.. Вот и ушла даром вся моя жизнь...
– Ну, тогда всё прекрасно, если ты уже всё узнал!.. А теперь можешь что-то другое снова искать – здесь тоже полно непонятного! – «успокоила» незнакомца обрадованная Стелла. – А как тебя зовут, грустный человек?
– Фабий, милая. А ты знаешь девочку, что тебе дала этот кристалл?
Мы со Стеллой от неожиданности дружно подпрыгнули и, теперь уже вместе, «мёртвой хваткой» вцепились в бедного Фабия...
– Ой, пожалуйста, расскажите нам кто она!!! – тут же запищала Стелла. – Нам обязательно нужно это знать! Ну, совсем, совсем обязательно! У нас такое случилось!!! Такое случилось!.. И мы теперь абсолютно не знаем, что с этим делать... – слова летели из её уст пулемётной очередью и невозможно было хоть на минуту её остановить, пока сама, полностью запыхавшись, не остановилась.
– Она не отсюда, – тихо сказал человек. – Она издалека...
Это абсолютно и полностью подтверждало мою сумасшедшую догадку, которая появилась у меня мельком и, сама себя испугавшись, сразу исчезла...
– Как – издалека? – не поняла малышка. – Дальше ведь нельзя? Мы ведь дальше не ходим?..
И тут Стеллины глаза начали понемножко округляться, и в них медленно, но уверенно стало появляться понимание...
– Ма-а-мочки, она что ли к нам прилете-е-ла?!.. А как же она прилетела?!.. И как же она одна совсем? Ой, она же одна!.. А как же теперь её найти?!
В Стеллином ошарашенном мозгу мысли путались и кипели, заслоняя друг друга... А я, совершенно ошалев, не могла поверить, что вот наконец-то произошло то, чего я так долго и с такой надеждой тайком ждала!.. А теперь вот, наконец-то найдя, я не смогла это дивное чудо удержать...
– Да не убивайся так, – спокойно обратился ко мне Фабий. – Они были здесь всегда... И всегда есть. Только увидеть надо...
– Как?!.. – будто два ошалевших филина, вытаращив на него глаза, дружно выдохнули мы. – Как – всегда есть?!..
– Ну, да, – спокойно ответил отшельник. – А её зовут Вэя. Только она не придёт второй раз – она никогда не появляется дважды... Так жаль! С ней было так интересно говорить...
– Ой, значит, вы общались?! – окончательно этим убитая, расстроено спросила я.
– Если ты когда-нибудь увидишь её, попроси вернуться ко мне, маленькая...
Я только кивнула, не в состоянии что-либо ответить. Мне хотелось рыдать навзрыд!.. Что вот, получила – и потеряла такую невероятную, неповторимую возможность!.. А теперь уже ничего не поделать и ничего не вернуть... И тут меня вдруг осенило!
– Подождите, а как же кристалл?.. Ведь она дала свой кристалл! Разве она не вернётся?..
– Не знаю, девонька... Я не могу тебе сказать.
– Вот видишь!.. – тут же радостно воскликнула Стелла. – А говоришь – всё знаешь! Зачем же тогда грустить? Я же говорила – здесь очень много непонятного! Вот и думай теперь!..
Она радостно подпрыгивала, но я чувствовала, что у неё в головке назойливо крутиться та же самая, как и у меня, единственная мысль...
– А ты, правда, не знаешь, как нам её найти? А может, ты знаешь, кто это знает?..
Фабий отрицательно покачал головой. Стелла поникла.
– Ну, что – пойдём? – я тихонько её подтолкнула, пытаясь показать, что уже пора.
Мне было одновременно радостно и очень грустно – на коротенькое мгновение я увидела настоящее звёздное существо – и не удержала... и не сумела даже поговорить. А у меня в груди ласково трепетал и покалывал её удивительный фиолетовый кристалл, с которым я совершенно не знала, что делать... и не представляла, как его открыть. Маленькая, удивительная девочка со странными фиолетовыми глазами, подарила нам чудесную мечту и, улыбаясь, ушла, оставив нам частичку своего мира, и веру в то, что там, далеко, за миллионами световых лет, всё-таки есть жизнь, и что может быть когда-то увижу её и я...
– А как ты думаешь, где она? – тихо спросила Стелла.
Видимо, удивительная «звёздная» малышка так же накрепко засела и у неё в сердечке, как и у меня, поселившись там навсегда... И я была почти что уверенна, что Стелла не теряла надежду когда-нибудь её найти.
– А хочешь, покажу что-то? – видя моё расстроенное лицо, тут же поменяла тему моя верная подружка.
И «вынесла» нас за пределы последнего «этажа»!.. Это очень ярко напомнило мне ту ночь, когда мои звёздные друзья приходили в последний раз – приходили прощаться... И вынесли меня за пределы земли, показывая что-то, что я бережно хранила в памяти, но пока ещё никак не могла понять...
Вот и теперь – мы парили в «нигде», в какой-то странной настоящей, ужасающей пустоте, которая не имела ничего общего с той тёплой и защищённой, нами так называемой, пустотой «этажей»... Огромный и бескрайний, дышащий вечностью и чуточку пугающий Космос простирал к нам свои объятия, как бы приглашая окунуться в ещё незнакомый, но так сильно всегда меня притягивавший, звёздный мир... Стелла поёжилась и побледнела. Видимо ей пока что было тяжеловато такую большую нагрузку переносить.
Поделиться