Презентация на тему: "Электромагнитные волны и их свойства". Презентация, доклад электромагнитные волны и их свойства Презентация на тему электромагнитные волны

Электромагнитное поле

Слайдов: 10 Слов: 364 Звуков: 0 Эффектов: 31

Электромагнитное поле. Теория электромагнитного поля. Покоящийся заряд создает электрическое поле. Но ведь заряд покоится лишь относительно определенной системы отсчета. Лежащий на столе магнит создает только магнитное поле. Вывод: электрические и магнитные поля – проявление единого целого: электромагнитного поля. Источником электромагнитного поля служат ускоренно движущиеся электрические заряды. Что такое электромагнитная волна? Какова природа электромагнитной волны? Существование электромагнитных волн было предсказано Дж. Причины возникновения электромагнитных волн. Представим себе проводник, по которому течет электрический ток. - Электромагнитное поле.ppt

Электромагнитное поле физика

Слайдов: 28 Слов: 1020 Звуков: 0 Эффектов: 0

Формирование электромагнитной картины мира. Эмпирическая база создания теории электромагнитных явлений. Закон Кулона (Шарль Огюстен де Кулон 1736-1806). «Электрические силы ослабевают обратно пропорционально квадрату расстояния». 1780 г. Датский физик Ханс Кристиан Эрстед (1777-1851). Электрический ток создает вокруг себя магнитное поле. 1819 г. Андре Мари Ампер (1775 -1836). Отрицал существование магнитных зарядов. Силовые линии поля – потоки или распространяющиеся колебания. Гипотеза о существовании электромагнитного поля и электромагнитных волн. Книга: «Динамическая теория электромагнитного поля», 1864 г. - Электромагнитное поле физика.PPT

Теория электромагнитного поля

Слайдов: 16 Слов: 1407 Звуков: 0 Эффектов: 17

Электромагнитное поле. Пояснительная записка. Учебно-методический комплекс. Логическая структура раздела. Влияние на развитие техники и технологии. Сущность. Формирование представления о научной картине мира. Психолого-педагогическое объяснение специфики восприятия. Ожидаемые результаты освоения раздела программы. Описывать и объяснять физические явления. Методы обучения. Система знаний. Выполнение фронтальных лабораторных работ. Календарно – тематическое планирование по разделу. - Теория электромагнитного поля.ppt

Электромагнитные поля и излучения

Слайдов: 10 Слов: 595 Звуков: 0 Эффектов: 9

Электромагнитное поле. Движущийся магнит. Условия существования полей. Попробуй реши. Электромагнитные волны. Свойства электромагнитных волн. Шкала электромагнитных волн. Рефераты. Решаем задачи. Железобетонные дома. - Электромагнитные поля и излучения.ppt

Волны электромагнитные

Слайдов: 17 Слов: 839 Звуков: 0 Эффектов: 40

Электромагнитные волны. Природа электромагнитной волны. Образование ЭМВ волны. Электромагнитная волна является поперечной. Историческая справка. В 1895году А.С. Попов продемонстрировал практическое применение ЭМВ для радиосвязи. Электромагнитные волны разных частот отличаются друг от друга. Радиоволны. Получаются с помощью колебательных контуров и макроскопических вибраторов. Применение: Радиосвязь, телевидение, радиолокация. Инфракрасное излучение (тепловое). Излучается атомами или молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. Видимое излучение. - Волны электромагнитные.ppt

Электромагнитные волны

Слайдов: 71 Слов: 2935 Звуков: 0 Эффектов: 0

Лекция 4. Электромагнитные волны. Лекция 4. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ. 4.2 Дифференциальное уравнение ЭМВ. 4.3 Экспериментальное исследование ЭМВ. 4.4 Энергия и импульс ЭМП. Герц Генрих Рудольф (1857 – 1894) – немецкий физик. Окончил Берлинский университет (1880 г.) и был ассистентом у Г. Гельмгольца. В 1885 – 89 гг. – профессор Высшей технической школы в Карлсруэ. В окружающем конденсатор и катушку пространстве поля практически равны нулю… Вибратор Герца. Вибратор. R – разрядник; Т - газоразрядная трубка; D – дроссели. Резонатор. Движущийся с ускорением электрический заряд испускает электромагнитные волны. - Электромагнитные волны.ppt

Электромагнитные волны урок

Слайдов: 13 Слов: 322 Звуков: 0 Эффектов: 14

Спектр электромагнитных волн. Этапы урока. Цель урока: Развитие естественно - научного миропонимания. Задачи урока: Гамма-излучение. Радиоволны. Видимый свет. Рентгеновское излучение. Инфракрасное излучение. Ультрафиолетовое излучение. К какому виду излучений принадлежат электромагнитные волны с длиной 0,1 мм? 1.Радиоизлучение 2.Рентгеновское 3.Ультрафиолетовое и рентгеновское 4.Радиоизлучение и инфракрасное. Укажите интервал длин волн видимого света в вакууме. Какой вид излучения обладает наибольшей проникающей способностью? 1. Ультрафиолетовое 2.Рентгеновское 3.Инфракрасное 4.?–Излучение. - Электромагнитные волны урок.ppt

Физика электромагнитные волны

Слайдов: 19 Слов: 669 Звуков: 5 Эффектов: 44

Электромагнитное поле. Электромагнитные волны. Повторение: Что такое электрическое поле? На что действует? Что такое магнитное поле? Что такое электромагнитное поле? Где возникает? Как распространяется? Джеймс Клерк Максвелл. Переменное магнитное поле создает переменное электрическое поле и наоборот. Так возникает электромагнитное поле. Максвелл выразил законы электромагнитного поля в виде системы 4 дифференциальных уравнений. ЭМ поле распространяется в виде ЭМ волн. Существование электромагнитных волн было предсказано М. Фарадеем в 1832. Майкл Фарадей. Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. - Физика электромагнитные волны.ppt

«Электромагнитные волны» 11 класс

Слайдов: 26 Слов: 801 Звуков: 0 Эффектов: 2

Электромагнитное поле. Цель. Задачи. Гипотеза. Актуальность. План. Теоретическая часть. Гипотеза Максвелла. Определение. Электромагнитная волна. Расположение векторов E, B и V в пространстве. Электромагнитная волна поперечная. Основные формулы. Колебательные контуры. Свойства электромагнитных волн. Закон отражения волн. Закон преломления волн. Интерференция. Дифракция. Поляризация. Характеристики электромагнитных волн. Практическая часть. Решение задач из части А ЕГЭ по физике за 2007 год. Перенос энергии. Катушка приемного контура радиоприемника. - «Электромагнитные волны» 11 класс.ppt

Свойства электромагнитных волн

Слайдов: 12 Слов: 751 Звуков: 0 Эффектов: 0

Характеристика и свойства электромагнитных волн. Электромагнитные волны излучаются колеблющимися зарядами. Наличие ускорения - главное условие излучения электромагнитных волн. Излучение єлектромагнитных волн. Гармонические колебания генератора изменяют (модулируют) в такт с колебаниями звуковой частоты. Принятый сигнал после преобразования (детектирования) подается на громкоговоритель. Электромагнитные волны излучаются рупорной антенной в направлении оси рупора. Общий вид установки изображен на рисунке. Поглощение и отражение электромагнитных волн. Электромагнитные волны не достигают приемника вследствие отражения. - Свойства электромагнитных волн.pptx

Электромагнитные волны и их свойства

Слайдов: 21 Слов: 1592 Звуков: 0 Эффектов: 42

Электромагнитные волны. Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. Шкала электромагнитных волн. История открытия электромагнитных волн. Радиоволны. Применение Радиосвязь, телевидение, радиолокация. Длинные волны. Длинные волны хорошо дифрагируют вокруг сферической поверхности Земли. Условия распространения сверхдлинных радиоволн исследуют, наблюдая за грозами. Основная часть энергии импульса грозового разряда приходится на диапазон колебаний. Средние волны. Средние волны используются главным образом для вещания. - Электромагнитные волны и их свойства.ppt

Действие электромагнитного поля

Слайдов: 19 Слов: 808 Звуков: 0 Эффектов: 0

Электромагнитное поле. Развитие взглядов на природу света. Источники электрического поля. Какое поле можно обнаружить вокруг неподвижной расчески. Железный сердечник. Способы усиления магнитного поля. Магнитные полюсы катушки. Проводник. Допущена ошибка. Преобразования. Преобразования энергии. Магнитный поток. Сила тока. Электромагнитная волна. Длина электромагнитной волны. Материал. - Действие электромагнитного поля.ppt

Влияние электромагнитного поля

Слайдов: 45 Слов: 1815 Звуков: 0 Эффектов: 0

Влияние электромагнитного поля на биологические объекты. Цели и задачи проекта. Цели. Введение. Некоторые отклонения наблюдаются лишь в периоды солнечной активности. Ухудшение состояние больных. Основные определения. Причины существования электромагнитного поля. Северный географический полюс. Земная магнитосфера защищает нашу планету от солнечного ветра. Магнитные бури – это возмущение магнитного поля Земли. Увеличивается число аварий на автомагистралях. Магнитные бури влияют на погоду и климат на Земле. Влияние магнитного поля на человека. Влияние на нервную систему. - Влияние электромагнитного поля.ppt

Влияние бытовых приборов на человека

Слайдов: 13 Слов: 606 Звуков: 0 Эффектов: 74

Бытовые приборы и здоровье человека. Показать как бытовые приборы влияют на здоровье человека. Изучить вопросы, связанные с воздействием бытовых приборов на здоровье человека. Радиоактивные вещества приводят к страшнейшим заболеваниям. Человеческий организм очень чувствителен к электромагнитному излучению. Особую опасность электромагнитные излучения представляют детям и беременным женщинам. В быту используют разнообразные электрические приборы и машины. По способу преобразования электрической энергии бытовые приборы делят на: Электронагревательные. Электромеханические. -




Электромагнитное поле излучается заметным образом не только при колебании заряда, но и при любом быстром изменении его скорости. Причем интенсивность излучения волны тем больше, чем больше ускорение, с которым движется заряд. Векторы Е и В в электромагнитной волне перпендикулярны друг другу п перпендикулярны направлению распространения волны. Электромагнитная волна является поперечной


Историческая справка Максвелл был глубоко убежден в реальности электромагнитных волн, но не дожил до их экспериментального обнаружения. Лишь через 10 лет после его смерти электромагнитные волны экспериментально получены Герцем. В 1895году А.С. Попов продемонстрировал практическое применение ЭМВ для радиосвязи. Сейчас мы знаем, что все пространство вокруг нас буквально пронизано электромагнитными волнами разных частот.


Электромагнитные волны разных частот отличаются друг от друга. В настоящее время все электромагнитные волны разделены по длинам волн (и, соответственно, по частотам) на шесть основных диапазонов: радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновские лучи, γ-излучение


Радиоволны Получаются с помощью колебательных контуров и макроскопических вибраторов. Свойства: радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами. проявляют свойства дифракции и интерференции. Применение: Радиосвязь, телевидение, радиолокация.


Инфракрасное излучение (тепловое) Излучается атомами или молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. Свойства: проходит через некоторые непрозрачные тела, а также сквозь дождь, дымку, снег, туман; производит химическое действие (фототгластинки); поглощаясь веществом, нагревает его; невидимо; способно к явлениям интерференции и дифракции; регистрируется тепловыми методами. Применение: Прибор ночного видения, криминалистика, физиотерапия, в промышленности для сушки изделий, древесины, фруктов.




1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способн" title="Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубками. Излучается всеми твердыми телами, у которых t0> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способн" class="link_thumb"> 10 Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубками. Излучается всеми твердыми телами, у которых t0> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благоприятно влияет на организм человека (загар), но в больших дозах оказывает отрицательное воздействие, изменяет развитие клеток, обмен веществ. Применение: в медицине, в промышленности. 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способн"> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благоприятно влияет на организм человека (загар), но в больших дозах оказывает отрицательное воздействие, изменяет развитие клеток, обмен веществ. Применение: в медицине, в промышленности."> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способн" title="Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубками. Излучается всеми твердыми телами, у которых t0> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способн"> title="Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубками. Излучается всеми твердыми телами, у которых t0> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способн">


Рентгеновские лучи Излучаются при больших ускорениях электронов. Свойства: интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь. Применение: в медицине с целью диагностики заболеваний внутренних органов; в промышленности для контроля внутренней структуры различных изделий.




Влияние электромагнитных излучений на живые организмы электромагнитное излучение частотой 50 Гц, которое создается проводами сети переменного тока, при длительном воздействии вызывает сонливость, признаки усталости, головные боли. Чтобы не усиливать действие бытовых электромагнитных излучений, специалисты рекомендуют не располагать близко друг к другу работающие в наших квартирах электроприборы микроволновую печь, электроплиту, телевизор, стиральную машину, холодильник, утюг, электрический чайник. Расстояние между ними должно быть не менее 1,52 м. На такое же расстояние следует удалять от телевизора или от холодильника ваши кровати.




Вопросы на закрепление 1.Что называют электромагнитной волной? 2.Что является источником электромагнитной волны? 3.Как ориентированы векторы Е и В по отношению друг к другу в электромагнитной волне? 4.Какова скорость распространения электромагнитных волн в воздухе?


Вопросы на закрепление 5. Какие выводы относительно электромагнитных волн вытекали из теории Максвелла? 6. Какие физические величины периодически меняются в электромагнитной волне? 7. Какие отношения между длиной волны, ее скоростью, периодом и частотой колебаний справедливы для электромагнитных волн? 8. При каком условии волна будет достаточно интенсивной для того, чтобы ее можно было зарегистрировать?


Вопросы на закрепление 9. Когда и кем были впервые получены электромагнитные волны? 10. Приведите примеры применения электромагнитных волн. 11. Расположите в порядке возрастания длины волны электромагнитные волны различной природы: 1) инфракрасное излучение; 2) рентгеновское излучение; 3) радиоволны; 4) γ -волны.

Слайд 2

Электромагнитные волны представляют собой распространение электромагнитных полей в пространстве и времени.

Слайд 3

Основные свойства электромагнитных волн

Электромагнитные волны излучаются колеблющимися зарядам.Наличие ускорения - главное условие излучения электромагнитных волн.

Слайд 4

Такие волны могут распространяться не только в газах, жидкостях и твердых средах, но и в вакууме.

Слайд 5

Электромагнитная волна является поперечной.

Периодические изменения электрического поля (вектора напряженности Е) порождают изменяющееся магнитное поле (вектор индукции В), которое в свою очередь порождает изменяющееся электрическое поле. Колебания векторов Е и В происходят во взаимно перпендикулярных плоскостях и перпендикулярно линии распространения волны (вектору скорости) и в любой точке совпадают по фазе. Силовые лини электрического и магнитного полей в электромагнитной волне являются замкнутыми. Такие поля называют вихревыми.

Слайд 6

Скорость электромагнитных волн в вакууме с=300000 км/с.Распространение электромагнитной волны в диэлектрике представляет собой непрерывное поглощение и переизлучение электромагнитной энергии электронами и ионами вещества, совершающими вынужденные колебания в переменном электрическом поле волны. При этом в диэлектрике происходит уменьшение скорости волны.

Слайд 7

При переходе из одной среды в другую частота волны не изменяется.

Слайд 8

Электромагнитные волны могут поглощаться веществом. Это обусловлено резонансным поглощением энергии заряженными частицами вещества. Если собственная частота колебаний частиц диэлектрика сильно отличается от частоты электромагнитной волны, поглощение происходит слабо, и среда становится прозрачной для электромагнитной волны.

Слайд 9

Попадая на границу раздела двух сред, часть волны отражается, а часть проходит в другую среду, преломляясь. Если второй средой является металл, то прошедшая во вторую среду волна быстро затухает, а большая часть энергии (особенно у низкочастотных колебаний) отражается в первую среду (металлы являются непрозрачными для электромагнитных волн).

Посмотреть все слайды

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

История открытия электромагнитных волн 1887 - Генрих Герц опубликовал работу "О весьма быстрых электрических колебаниях", где описал свою экспериментальную установку - вибратор и резонатор, - и свои опыты. При электрических колебаниях в вибраторе в пространстве вокруг него возникает вихревое переменное электромагнитное поле, которое регистрируется резонатором

Слайд 7

Описание слайда:

Слайд 8

Описание слайда:

Слайд 9

Описание слайда:

Слайд 10

Описание слайда:

Слайд 11

Описание слайда:

Слайд 12

Описание слайда:

Слайд 13

Описание слайда:

Ультрокороткие волны Радиоволны длиной менее 10 м (более 30 Мгц). Волны ультракороткие подразделяются на волны метровые (10-1 м), дециметровые (1 м- 10 см), сантиметровые (10-1 см) и миллиметровые (менее 1 см). Основное распространение в радиолокационной технике получили сантиметровые волны. При расчете дальности системы самолетовождения и бомбометания на ультракороткие волны предполагается, что последние распространяются по закону прямой (оптической) видимости, не отражаясь от ионизированных слоев. Системы на ультракоротких волнах более помехоустойчивы к искусственным радиопомехам, чем системы на средних и длинных волнах. Ультракороткие волны по своим свойствам наиболее близки к световым лучам. Они в основном распространяются прямолинейно и сильно поглощаются землей, растительным миром, различными сооружениями, предметами. Поэтому уверенный прием сигналов ультракоротковолновых станций поверхностной волной возможен главным образом тогда, когда между антеннами передатчика и приемника можно мысленно провести прямую линию, не встречающую по всей длине каких-либо препятствий в виде гор, возвышенностей, лесов. Ионосфера же для ультракоротких волн подобно стеклу для света - "прозрачна". Ультракороткие волны почти беспрепятственно проходят через нее. Поэтому-то этот диапазон волн используют для связи с искусственными спутниками Земли, космическими кораблями и между ними. Но наземная дальность действия даже мощной ультракоротковолновой станции не превышает, как правило, 100-200 км. Лишь путь наиболее длинных волн этого диапазона (8-9 м) несколько искривляется нижним слоем ионосферы, который как бы пригибает их к земле. Благодаря этому расстояние, на котором возможен прием ультракоротковолнового передатчика, может быть большим. Иногда, однако, передачи ультракоротковолновых станций слышны на расстояниях в сотни и тысячи километров от них.

Слайд 14

Описание слайда:

Слайд 15

Описание слайда:

Слайд 16

Описание слайда:

Слайд 17

Описание слайда:

Слайд 18

Описание слайда:

Слайд 19

Описание слайда:

Слайд 20

Описание слайда:

Слайд 21

Описание слайда:

Рентгеновское излучение В 1895 году В. Рентген обнаружил излучение с длиной волны. меньшей, чем УФ. Это излучение возникало при бомбардировке анода потоком электронов, испускаемых катодом. Энергия электронов должна быть очень большой - порядка нескольких десятков тысяч электрон-вольт. Косой срез анода обеспечил выход лучей из трубки. Рентген также исследовал свойства "Х-лучей". Определил, что оно сильно поглощается плотными веществами - свинцом и другими тяжелыми металлами. Им же было установлено, что рентгеновское излучение поглощается по-разному. излучение которое сильно поглощается, было названо мягким, мало поглощаемое - жестким. В дальнейшем было выяснено, что мягкому излучению соответствуют более длинные волны, жесткому - более короткие. В 1901 году Рентген первым из физиков получил Нобелевскую премию.

Описание слайда:

Гамма-излучение Атомы и атомные ядра могут находиться в возбужденном состоянии менее 1 нс. За более короткое время они освобождаются от избытка энергии путем испускания фотонов - квантов электромагнитного излучения. Электромагнитное излучение, испускаемое возбужденными атомными ядрами, называется гамма-излучением. Гамма-излучение представляет собой поперечные электромагнитные волны. Гамма-излучение - самое коротковолновое излучение. Длина волны меньше 0,1 нм. Это излучение связано с ядерными процессами, явлениями радиоактивного распада, происходящими с некоторыми веществами как на Земле, так и в космосе. Атмосфера Земли пропускает только часть всего электромагнитного излучения, поступающего из космоса. Например почти все гамма-излучение поглощается земной атмосферой. Это обеспечивает возможность существования всего живого на Земле. Гамма-излучение взаимодействует с электронными оболочками атомов. передавая часть своей энергии электронам. Путь пробега гамма-квантов в воздухе исчисляется сотнями метров, в твердом веществе - десятками сантиметров и даже метрами. Проникающая способность гамма-излучения увеличивается с ростом энергии волны и уменьшением плотности вещества.

Слайд 24

Описание слайда:






Отражение электромагнитных волн A B 1 irir C D 2 Отражение электромагнитной волны: металлический лист 1; металлический лист 2; i угол падения; r угол отражения. Отражение электромагнитной волны: металлический лист 1; металлический лист 2; i угол падения; r угол отражения. (угол падения равен углу отражения)


Преломление электромагнитных волн (отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равная отношению скорости электромагнитных волн в первой среде к скорости электромагнитных волн во второй среде и называется показателем преломления второй среды относительно первой) Преломление волновых фронтов на поверхности раздела двух сред






Распространение радиоволн Распространение радиоволн - явление переноса энергии электромагнитных колебаний в диапазоне радиочастот. Распространение радиоволн происходит в естественных средах, то есть на радиоволны влияют поверхность Земли, атмосфера и околоземное пространство (распространение радиоволн в природных водоемах, а также в техногенных ландшафтах).


100 м (надежная радиосвязь на ограниченных расстояниях при достаточной мощности) Короткие волны - от 10 до 100 м Ультракороткие радиоволны - 100 м (надежная радиосвязь на ограниченных расстояниях при достаточной мощности) Короткие волны - от 10 до 100 м Ультракороткие радиоволны - 9 Средние и длинные волны - > 100 м (надежная радиосвязь на ограниченных расстояниях при достаточной мощности) Короткие волны - от 10 до 100 м Ультракороткие радиоволны - 100 м (надежная радиосвязь на ограниченных расстояниях при достаточной мощности) Короткие волны - от 10 до 100 м Ультракороткие радиоволны - 100 м (надежная радиосвязь на ограниченных расстояниях при достаточной мощности) Короткие волны - от 10 до 100 м Ультракороткие радиоволны - 100 м (надежная радиосвязь на ограниченных расстояниях при достаточной мощности) Короткие волны - от 10 до 100 м Ультракороткие радиоволны - 100 м (надежная радиосвязь на ограниченных расстояниях при достаточной мощности) Короткие волны - от 10 до 100 м Ультракороткие радиоволны - title="Средние и длинные волны - > 100 м (надежная радиосвязь на ограниченных расстояниях при достаточной мощности) Короткие волны - от 10 до 100 м Ультракороткие радиоволны -


Вопросы Какое свойство электромагнитных волн показано на рисунке? Ответ: отражение Электромагнитные волны являются … волнами. Ответ: поперечными Явление переноса энергии электромагнитных колебаний в диапазоне радиочастот – это …. Ответ: распространение радиоволн



Поделиться